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SAR Observation of Ocean Winds

How does a SAR image the ocean surface
How ar e ocean winds estimated from SAR
Imagery

Radar cross section models needed to estimate
ocean winds



Bragg Scattering

When theradar wavelength, | ,
projected onto the surface
matches a periodic structure on
the surface, thereisaresonance
effect causing a strong backscatter

=> pragg scattering
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g, = radar incidence angle

q,” = local incidence angle of surface
S(k,F ) = spectrum of surface

k = radar wavenumber = 2p/I

F =look direction of theradar

R = reflectivity constant (depends on dielectric constant, ;)
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(copied from Frank Monaldo, APL)



Bragg Scattering (cont.)

» s, Isproportional tothe amplitude of the
“bragg wave’ (the wave on the surface that
matchesthe bragg condition) only

— thisistheonly surface structuretheradar “ sees’

e Radar only “sees’ the bragg wavesthat are
moving toward or away from the sensor
(moving in theF direction)

* A local tilting of the surface changesthe local
Incidence angleq,” and thus changesthe wave
on the surface that matchesthe bragg condition



SAR Ocean Imaging

 For SAR incidence angles between 20 and 60
degr ees, bragg scattering isthe dominant
backscatter mechanism

— for angleslessthan 20 degrees, specular scattering
becomes dominant
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R, = reflectivity for specular surface

sy2 = small-scale height variance

p = probability of a specular surface, g = tan(q,)

— for angles greater than 60 degrees, no standard
theory applies, but surface shape seemsto become
Important



SAR Ocean Imaging (cont.)

Two-Scale Model

M odel the ocean surface as a set of flat facets. Each facet is~3l in
length. Theradar cross section from each facet isdetermined by
bragg scattering => determined by the amplitude of the bragg
waves within the facet and thelocal tilt of the facet caused by

|ar ge-scale waves
Bragg Wave
Facets
~>
-
~3l

Ocean Surface



SAR Ocean Imaging (cont.)

Bragg waves ar e created by thelocal wind then propagate along
the surface
=> amplitudes are deter mined by local wind conditions
and ocean surface currentsthey encounter

Facet tilts are caused by the amplitudes of the long-scale waves
=> determined by local winds, swell

Bragg Wave
Facets

—

-
~3l

Ocean Surface



SAR Ocean Imaging (cont.)

 SAR imaging of large-scale ocean structures
(waves, fronts, surfactants, etc.) isalways an
iIndirect effect

— SAR only seesthe effect that the large-scale
structur es have on the bragg waves

e Ocean surfaceisalways moving which causes
Image smearing
— azimuth resolution of a SAR image of the ocean is
(R/V)s, wheres, isthe standard deviation of bragg
scatterer velocitieswithin afacet (s, ~0.2t0 0.4,

R/V for an airplane ~50 - 80, R/V for a satellite ~
110 - 150)




SAR Ocean Imaging (cont.)

Tilting the facet changesthe amplitude of the bragg wave because
the wave height spectrum is not flat around the bragg wave
location => knowing the spectrum in thisbragg region isvery
important to SAR ocean imaging (modelsrange from k-4 to k)

Wave Height Spectrum

Bragg wave for facet tilted toward the
radar (larger amplitude)

/Bragg wave for radar incidence angle

ragg wave for facet tilted away
from theradar (smaller amplitude)

Spectrum scal}

askP

Ocean wave spectrum

Ocean wave wavenumber



How Does A SAR Image...

|ar ge-scale waves

— orbital velocitiesinduce currents on the surface that affect the bragg wave
amplitudes, local surface slope tiltsthe local facets

current fronts

— bragg wave amplitudes ar e affected asthey crossthe current front, bragg
waves arerefracted

oil spills, surfactents

— dampensthe ocean surface, removing all bragg waves => no backscatter
local wind

— wind speed/dir ection changes bragg wave amplitude
inter nal waves

— wave propagation caused modulation of surface currents, the bragg waves
pass through these currents and change their amplitudes

bathymetry

— flow over the bathemetric feature (usually tidal flow) causes modulation of
surface currents, the bragg waves pass through these currents and change
their amplitudes

atmospheric conditions
— local changesin wind speed/direction change bragg wave amplitudes



Example SAR Signatures From Various Events

Current
fronts

Surface
wind field

Rain
cells
Ol
spills

Severe
storms




SAR Observation of Ocean Winds

Based on two-scale Bragg scattering,
s, from wind generated waves will
depend on:

(1) wind speed

faster wind => higher s

(2) wind direction

Higher s when looking into/away from the
wind, lower when looking cross wind

(3) local incidence angle
Higher s for high incidence angle

=> can develop a RCS modd s =f(u,f 4.0

(u =wind speed, f ;.4 = wind direction with respect to the SAR ook
direction, g, = incidence angle)

M odels have been developed for C-VV (CMOD4), but no

standard model existsfor C-HH




Estimating Ocean Winds From SAR Imagery

Find the value of u such that

S o=f(U,f ingChi)

| nver se Radar
Cross Section
(RCS) Modd

Wind
G

AKDEMO needed to develop the C-HH

RADARSAT RCSmodel to perform theinversion

M odifications of CMOD4 C-VV modd

*New model for C-HH



C-HH RCS Models Examined

(1) Two Scale M odel

= @ (Su S )[1+ S(Wh(sy 5c)lr (s 50 )dlsydis
3

s(u) =agu +a2u2+a1u +a
(2) Empirical Scaling M odel
si =sY(agtan®q; +a,tan?q; +a,tang; +a)

(3) Bra gScallng odel
Fl+a0tan of

SO _SO (1+2tan qi)



Model C-HH RCS (dB)

Radarsat C-HH RCS vs. Models

Radarsat C-HH RCS (dB)

0
-5
'
15 f .
[
-20 XK f XX %
éé o0
-25 =
L
230 ® Two Scale Model RMSE=2.4dB
A Empirical Scaling Model RMSE=3.0dB
X Bragg Scaling Model RMSE=3.2dB
-35
X
A
-40 Y
-30 -25 -20 -15 -10 -5



Alaska SAR Demonstration
Wind Vector Products

ChrisWackerman
Veridian ERIM International

NOAA/NESDIS Alaska SAR Demonstration Workshops
25-29 September 2000



Wind Vector Products Presentation

Description of wind vector algorithm
Example image products

Algorithm performance

Future Work



Estimating Ocean Winds From SAR Imagery

= @5 p(Su S )l1+ sWh(sy s )lr (s, 5¢)ds, s,

H

or

S, :sg(a3tan3q- +a,tan®q; +a,tanq, +ao)
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Wind
SAR Direction
| mage

CiaN

| nver se Radar -
Wind
Cross Section >
Speed
M odel

Change the wind speed
until the model RCS
matchesthe RCSin the
Image



Estimating Wind Direction From SAR

Region to use to estimate a wind vector

Region to use to generate a spectrum
from theimage

Form a smoothed spectrum by
calculating a spectrum over
multiple placements of the smaller
region, then averaging the spectra

Calculatethe elongation direction
of the spectral energy over large
scales (3 - 20 km), wind direction is
rotated 90 degreesfrom this
direction
(red=estimate, white=actual)




Estimating Wind Direction From SAR
(cont.)

Wind direction estimates have a 180 degree
ambiguity

Direction of large-scale spectrum elongation is
estimated by fitting a quadratic polynomial to
the low wavenumber portion of the spectrum
L and ismasked out using a coastline map

— 2 km uncertainty isadded for registration errors

Smooth wind directions using a 3x3 weighted
aver age with the RCS values asthe weights



Final Wind Algorithm Products

« Combinewind direction estimate with
aver aged RCSto generate wind speed

 Generatean ascii file of latitude/ longitude
locations with wind speed and direction

— remember 180 deg ambiguity with wind direction

 Generateagraphic of the RADARSAT image
with wind vector s superimposed over the image

— vectorshave no “head” dueto ambiguity









Estimating Wind Algorithm Performance

o Seriesof RADARSAT imagery was collected
off the east coast of the U.S. containing NOAA
buoys

* Wind speed, direction from the buoyswere
used asground truth

 Nearest estimated wind vector from theimage
was used to compareto the buoy data

 |n following images, white lines are estimated
vectors, red lines are buoy-derived vectors
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wind Direction Error (degs)

Polynomial Algorithm Results

Ratio of Quadratic Coefficients
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Polynomial Algorithm Results Limited by Ratio of Quadratic

Coefficients
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Empirical Scaling RCS Model With Wind Direction Smoothing
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X Original Algorithm (RMSE=4.0 m/s)
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Empirical Scaling RCS Model with Smoothed Wind Directions
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Wind Algorithm Performance

 Winddirectionerrors.
— over theentiredata set: RM SE = 41 degs

— after checking for adequate ratio of quadratic
coefficients: RM SE = 36 degs

— after applying spatial smoothing: RM SE = 32 degs
 Wind speed errors:

— RM SE = 4.0 m/swithout mean bias removed

— RM SE = 1.6 m/swith mean biasremoved



Wind Algorithm Future Work

« Morerobust metric for when to believe
direction estimate from the SAR image

— procedureto replace the direction from surrounding
estimates or model outputs
 Merging of thetwo algorithms from the two
contractorsintoasingle AKDEM O algorithm
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Vessal Detection Products Presentation

Description of automated detection algorithm
Example graphical products

Algorithm perfor mance estimation
Futurework



Nested Windows Used in the Ship Detection Algorithm
)

Background
Window

Buffer
Window

Signal
Window

For each placement of
>theset of local windows,
calculate a detection
statistic, d:

_ (mgmy)
d= g

disa CFAR satistic:
constant falsealarm
) rate

Used to calculate m
d to calculatem,,, s,



Vessel Detection Algorithm

For each placement of thelocal

windows, a vessel isdetected if:

d>T,=55Inwater regions
=12 in noiseregions

m,>m, = .03

m, <m, (variesfor each image)

S, <s;=0.003 (near land)

Detectionsareignored if therearemorethan 2 km
from water, but kept if they arewithin 2 km of shore
In order to handle possibleregistration errors.



Vessel Detection Algorithm

o Statisticsare calculated using a“fast”
algorithm that just continually adds and
subtracts from sums over window samples

« Approach allowsa Wide Swath ScanSAR
Image to be processed in approximately 10
minutes of elapsed time.

e Output products:

— ascli file of ship locations (latitude,longitude) and
ancillary information

— graphical product of ship locations superimposed on
RADARSAT image




Example

V essel
Detection
Product

Greenisa
confident
detection, red isa
less confident
detection.
Trianglesarein
thewater, squares
arewithin 2 km of
shore.




Example

V essel
Detection
Product

Greenisa
confident
detection, red isa
less confident
detection.
Trianglesarein
the water, squares
arewithin 2 km of
shore.
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Example

V essel
Detection
Product

Greenisa
confident
detection, red isa
less confident 132M
detection.
Trianglesarein
thewater, squares
arewithin 2 km of
shore.




Ship Detection Algorithm Performance
Estimation

o A seriesof 30 RADARSAT imageswere
manually analyzed to determine false alarm
rates and obvious missed detections

 Animagewith a known number of shipswas
analyzed to deter mine the number of missed
detections and estimate the smallest ship
detected

* |magesthat contained individual shipswith
known lengths and locations wer e analyzed



Ship detection
resultsfor afishing
fleet. Detections
are shown above
thewhitetriangles.




Probability of False Alarm (%)

False Alarm Analysis For Various Detection Thresholds
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Vessel Detection Algorithm Performance

A RADARSAT image was collected during the
Red King Crab Fishery in Bristol Bay

T
a

T

ne fishery had a known number of shipswith
Known distribution of ship lengths

nere were no shipsin thewater s outside of the

fishery

Detections outside of the fishery were used to
estimatethefalse alarm rate, which wasthen
used to remove detectionswithin the fishery
that represented false alarms

— assumes same false alarm rate throughout the image



Red King
Crab 16401
Fishery
| mage




Detections for the Red King Crab Fishery Using L ow
Resolution Imagery
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Detectionsfor the Red King Crab Fishery With Low and
High Resolution Imagery
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Ship Lengths
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Estimating The Smallest Detectable Ship

 Assumethat thelarger the ship, thelarger its
RCS, and thusthe more detectable

 Thenumber of shipsthat are detected then
represent the longest shipsin the scene

e Using the known distribution of ship lengths,
find the length cut-off for the number of ships
detected

— after removing the estimated number of false alarms




Estimating The Smallest Detectable Ship

e For low resolution (100m sample spacing)
Imagery
— shipsdetected > 35 metersin length (0.01% FAR)
— appearsto belimited by sample spacing (false alarm
rateisstill low when number of detections plateaus)
e For high resolution (50m sample spacing)
Imagery
— almost all the shipscan be detected, but with
unacceptable false alarm rates

— for reasonablefalse alarm rates, shipsdetected > 32
metersin length (0.002% FAR)

— limited by false alarm rate, not sample spacing



Vessel Detection Algorithm Performance

e For asmall number of ships(6), their locations
wer e known at specific times

« RADARSAT imageswere located that should
contain the ships and processed with the
detection algorithm

 Resultswereput intothreebins:
— detection => ship location very near a detection
— possible detection => ship location closeto a
detection

— missed detection => no ship detection nearby the
ship location



Example of a detection:
nested white squares
show reported ship
location. White
triangles represent
“sure” detections, black
triangles are “ maybe”
detections




Exampleof a
missed
detection




Possible
Detection

Detection




Resultsfor Individual Ships

Ship Length Possible Number of Number of Number of
(meters) Number of Detections Possible Missed

Detections Detections Detections

55 4 4 0 0

55 2 1 1 0

49 2 2 0 0

47 3 1 1 1

41 1 0 0 1

32 1 0 0 1

=> ships detected if length > 41 meters




Summary of Vesseal Detection Algorithm
Perfor mance
* Low Resolution | mages (100 meter sample

spacing)

— Vesselsdetected if length > 35-41 meters

e limited by sample spacing
— False Alarm Rate (FAR) 0.02% per detection
attempt

 High Resolution Images (50 meter sample
spacing)
— Vessel detected if length > 32 meters
e limited by FAR
— FAR =0.002% per detection attempt



FutureWork For Vessal Detection
Algorithm

 |ncorporate approach that will allow the signal
box tovary in sizeto handle large and small
ships ssimultaneoudy
— use alarge number of nested boxes, pick the

signal/background pair that maximize d

e |ceintheimage causes a significant number of
false alarms
— develop an automated algorithm for detecting ice

— need to separatetypesof icein order to still locate
vesselswithin ice“fingers’



Example

product for
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Example
product for
automated ice
classification:

green = land

red =ice

yellow = ice
fingers

blue = water




Example
product for
automated ice
classification:

green = land

red =ice

yellow = ice
fingers

blue = water




